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a b s t r a c t

A model of a laminated composite beam including multiple non-propagating part-

through surface cracks as well as installed PZT transducers is presented based on the

method of reverberation-ray matrix (MRRM) in this paper. Toward determining

the local flexibility characteristics induced by the individual cracks, the concept of the

simulate the behavior of the composite beam with open cracks. As a result, transverse

shear and rotatory inertia effects are included in the model. Only one-dimensional axial

vibration of the PZT wafer is considered and the imperfect interfacial bonding between

PZT patches and the host beam is further investigated based on a Kelvin-type

viscoelastic model. Then, an accurate electro-mechanical impedance (EMI) model can

be established for crack detection in laminated beams. In this model, the effects of

various parameters such as the ply-angle, fibre volume fraction, crack depth and

position on the EMI signatures are highlighted. Furthermore, comparison with existent

numerical results is presented to validate the present analysis.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Fibre reinforced composites are being used extensively in aerospace, mechanical and maritime applications due to their
high strength to weight ratio and excellent corrosion resistance [1]. During the service lifetime, the composite structures
will be subjected to various loads and exposed to corrosive environment that may cause initiation of structural defects
such as impact-induced damages [2], hole-type damages [3], delaminations [4–7], cracks [8–11], etc. These tiny flaws can
get significant and finally lead to the catastrophic failure of the structures as time progresses. Thus, new reliable and
inexpensive methods should be found to identify structural defects such as cracks at a very early stage and provide some
estimate of the extent or severity of the damages.

It is well known that cracks initiating in a structure result in a reduction of the local stiffness and hence alter the global
dynamic structural behavior. Consequently, the dynamic properties of the cracked structures contain information about
the severity and location of the damage. Under this consideration, dynamic analysis has been explored for detecting and
monitoring cracks occurring in composite materials for many years. Krawczuk and Ostachowicz [8] investigated the
eigenfrequencies of a cantilever beam, made from graphite fibre reinforced polyimide, with a transverse open crack, which
is modeled by a massless spring and the cracked beam finite element, respectively. Krawczuk et al. [9] presented a model
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and an algorithm for creation of the characteristic matrices of a composite beam with a single transverse fatigue crack.
Song et al. [10] analyzed the free bending vibration of cantilevered composite beam with multiple surface cracks by an
exact solution methodology based on Laplace transform technique. Kisa [11] studied the effects of cracks on the dynamics
of a cantilever composite beam using the finite element and the component mode synthesis methods. All of these
investigations focus on dynamic properties of cracked composite beams at low frequencies and only the first few low-
frequency modes are considered which are not sensitive enough to detect tiny yet potentially damaging cracks in the
structure [12].

In the past decade, there have been extensive investigations on the electro-mechanical impedance (EMI) approach
using piezoelectric sensors/actuators integrated onto structures to monitor their conditions [6,13–18]. The EMI signatures
extracted from PZT wafers in the high-frequency range are directly related to the mechanical impedance of the bonded
structure and thus are highly sensitive to minor changes in structural integrity. In the conventional EMI method, a pin force
model is always assumed to simulate ideal bonding between PZT wafers and the host structure in which all the load
transfer takes place over an infinitesimal region at the ends of the piezoelectric patches [19]. Recently, much attention has
been paid on the effect of adhesive on the performance of piezoelectric elements [19–23], and connection between PZT
patches and host structure is considered to be achieved through interfacial shear stress based on the shear lag model
[20,23], see the paper of Crawley and Lius [24]. More recently, Han et al. [25] provided a comprehensive theoretical study
of the effect of bonding layer, which is simulated by a Kelvin-type viscoelastic model, on the coupled electro-mechanical
characteristics of a piezoelectric sensor bonded to an isotropic elastic substrate in the high-frequency range. In this
interfacial viscoelastic model, a linear spring and a linear dashpot are parallel-connected [26,27]. However, the focus of
their work was on the study of the effect of the material and geometric properties of the sensor and the bonding layer on
the load transfer from the host medium to the sensor. No further information about the host structure, such as the crack
depths and locations etc., was revealed in the high-frequency range.

In order to establish an accurate EMI model for crack detection in composite beams, another important issue, which
relates to high-frequency dynamic analysis for a composite beam, should be considered carefully. The classical dynamic
analysis techniques such as the finite element method (FEM) [8–11] and the transfer matrix method (TMM) [6] have been
employed to investigate damaged composite beams. However, FEM is usually subjected to an inherent disadvantage
because high-frequency analysis of structure inevitably involves a huge number of degrees of freedom, which result from
the huge numbers of finite elements and nodes, for predicting sufficiently accurate frequencies. The transfer matrix
method (TMM) is very powerful to analyze a regular structure consisting of many members because the number of
resultant simultaneous equations can be greatly reduced. However, significant numerical difficulty at high frequency limits
its application if the computation is completely executed on a computer [28]. Note that the method of reverberation-ray
matrix (MRRM) [29,30], which is based on the concept of elastic wave propagation, has shown its great superiority on
high-frequency dynamic analysis in our previous works [23,31]. The specific advantage of MRRM over the finite element
method (FEM) and the transfer matrix method (TMM) has been well discussed in detail [29,31,32] and hence omitted here.

The main aim of this paper is to establish an accurate EMI model for analytical crack detection of a composite beam.
The analysis is based on a Timoshenko beam model and the crack is treated as a massless rotational spring [8,10,11]. A pair
of PZT patches with free ends symmetrically bonded onto the composite beam are assumed in a state of pure one-
dimensional axial strain [13,20,23,25,31] under an out-of-phase harmonic electric force and hence a pure bending
excitation is created [13]. Since the strain/stress transfer between PZT patches and the host beam is physically
implemented through adhesives, a Kelvin-type viscoelastic law [25–27] is introduced into the EMI model for the first time
to account for the bonding effect in order to improve signature sensitivity to cracks. Furthermore, the inertia effect of PZT
actuator/sensor is taken into account because high-frequency electric field with typical propagation wave length
comparable to the length of actuator is applied [25,33]. The method of reverberation-ray matrix (MRRM) is adopted to
investigate the dynamics of the coupled smart structure system (piezoelectric patches-adhesive-cracked composite beam),
which can overcome the difficulty associated with high-frequency analysis. Then, an analytical expression of impedance
(or admittance) containing crack parameters as well as other physical parameters is derived for crack detection in the
composite beams. Numerical results are finally obtained and discussed to demonstrate the validity of this analysis.
2. Formulations of composite beams with imperfectly bonded PZT patches

As shown in Fig. 1, a pair of PZT patches is bonded symmetrically onto the top and bottom surfaces of a cantilever
composite beam and is driven by a fixed alternating electric field out of phase. To derive the governing equations, a beam
segment bonded with PZT patches will be examined here as illustrated in Fig. 2. First, the equation of motion of PZT patch
assumed in a state of 1D axial strain [25,31,33] is expressed as

Ep
@2up

@x2
�

t
hp
¼ rp

@2up

@t2
, (1)

where up is the axial displacement of the PZT patches, r and E are the mass density and Young’s modulus, respectively, h is
the thickness (subscript p signifies the PZT patch), t, varying along the bonding length, is the interfacial shear stress
between the PZT patch (beam) and the adhesive, and t is the time variable. The shear stress t distributed in the layer is
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Fig. 1. Geometry of an intelligent beam with surface cracks.
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Fig. 2. A beam segment with adhesively bonded PZT patches.
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determined by the following constitutive relation based on Kelvin-type viscoelastic model [25]:

t¼ Gb

hb
ðup�uÞþ

cb

hb

dðup�uÞ

dt
, (2)

where Gb, hb and cb are the shear rigidity, the thickness and the coefficient of viscosity of the bonding layer, respectively, and

u¼�
h

2

@w

@x
(3)

in which u and w are the axial displacement and transverse deflection of beam, respectively, and h is the thickness of the
composite beam. It should be pointed out that the spring constant and the viscosity coefficient of the interface defined in
Refs. [26,27] are respectively given by Gb/hb and cb/hb here [25].

In this paper, it is assumed that the stress field of the cracked beam is influenced only in the region near to the crack
according to the Saint Venant’s principle and the discontinuity in the stiffness induced by the crack will be simulated by a
massless rotational spring with infinitesimal length [8,10]. Thus, the composite beam is converted to a continuous-discrete
model [10]. For the beam segment with piezoelectric elements, the governing equations are derived based on Timoshenko
beam theory [10] as follows:

@M

@x
þtðxÞbh�QþrI

@2j
@t2
¼ 0, M¼�S11I

@j
@x

@Q

@x
¼ rA

@2w

@t2
, Q ¼ kAS66

@w

@x
�j

� �
(4)
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in which M and Q are the bending moment and shear force, I and A are the moment of area and cross sectional area, and k is
the shear correction factor, respectively. S11, S66 and r denote the transverse bending stiffness, transverse shear stiffness
and the mass density of the composite beam, respectively, and can be derived from the mechanical properties of the
composite and the ply-angles of the fibre [8–11]. As a result, the transverse shear and rotatory inertia are included in this
model. It is further assumed that the material of the composite beam is orthotropic, its principle axes x10y1 of orthotropy
being rotated in the plane x0y by an angle y considered to be positive when it is measured from the positive x-axis in the
counterclockwise direction as shown in Fig. 1. Then, on defining m¼ cosy and n¼ siny, we derive the following stiffness
constants Sij of the composite along the axes x0y [11]:

S11 ¼ S11m4þ2ðS12þ2S66Þm
2n2þS22n4,

S66 ¼ S66m4þðS11�2S12þS22�2S66Þm
2n2þS66n4, (5)

in which

S11 ¼
E11

1�n2
12ðE22=E11Þ

, S22 ¼ S11
E22

E11
, S12 ¼ n12S22, S66 ¼ G12, (6)

where the mechanical constants of the composite E11, E22, G12, n12 as well as the mass density r in Eq. (4) can be
determined in Appendix A. Letting upðx,tÞ ¼ upðxÞeiot , uðx,tÞ ¼ uðxÞeiot , wðx,tÞ ¼wðxÞeiot , tðx,tÞ ¼ tðxÞeiot and j¼jðxÞeiot (o
is the angular frequency in rad/s, i¼

ffiffiffiffiffiffiffi
�1
p

and o=2pf, f is the frequency in Hz) by the method of separation of variables
yields the following differential equations from Eqs. (1) to (4):

@j
@x
¼
@2w

@x2
þ
ro2

kS66
w, up ¼ c1

@2j
@x2
þc2

@w

@x
þc3j,

c1 ¼
S11hbh2

12Z0Gb
, c2 ¼�

h

2
þ
kS66hb

Z0Gb
, c3 ¼

ro2hbh2�12kS66hb

12Z0Gb
(7)

and Eq. (2) can be rewritten as

t¼ Z0Gb

hb
ðup�uÞ, (8)

where

Z0 ¼ 1þ io cb

Gb
: (9)

Introduce the following parameter G and the stiffness ratio between beam and the piezoelectric patch:

G¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGyb=h

2

bÞðcþa0Þ=c
q

, c¼ S11h=ðEphpÞ, (10)

where G¼ Z0Gb=Ep, yb=hb/hp, hb ¼ hb=a, (a= lp/2, lp is the length of PZT patch) and a0=6.
Setting Z0=1, i.e. cb=0, we can get the classical shear lag model by Crawley and Lius [24], and the coefficient G becomes

the well-known shear lag parameter [20,24,31]. For values of G greater than 30, the perfect bonding between the PZT
patches and the host beam can be further assumed for engineering models [20,24]. Then, on defining k2

p ¼ rpo2=Ep,
k2

s ¼ ro2=S11 and k2
G ¼ ro2=ðkS66Þ, we derive the following six-order differential equation:

@6w

@x6
þA

@4w

@x4
þB

@2w

@x2
þCw¼ 0 (11)

in which

A¼�ðG=aÞ2þk2
pþk2

s þk2
G,

B¼ ðk2
G k2

s þk2
G k2

pþk2
p k2

s Þ�ðk
2
Gþk2

s Þ
c

cþa ðC=aÞ2�k2
p

a
cþa ðC=aÞ2�

12k2
s

h2

C ¼
12k2

s

h2

c
cþa ðC=aÞ2�k2

p

� �
�k2

G k2
s

c
cþa ðC=aÞ2þk2

G k2
s k2

p : (12)

Hence, the following relations can be obtained

w¼ ða1eb1xþa2eb2xþa3eb3xþd1e�b1xþd2e�b2xþd3e�b3xÞeiot ,

j¼ ðg1a1eb1xþg2a2eb2xþg3a3eb3x�g1d1e�b1x�g2d2e�b2x�g3d3e�b3xÞeiot ,

up ¼ ðl1a1eb1xþl2a2eb2xþl3a3eb3x�l1d1e�b1x�l2d2e�b2x�l3d3e�b3xÞeiot , (13)

where gi ¼ biþk2
G=bi, li ¼ c1b

2
i giþc2biþc3gi, (i=1,2,3), and ai and di (i=1,2,3) are undetermined constants, and bi are the

characteristic roots of Eq. (11). For a general Timoshenko beam segment without bonding piezoelectric patches, the basic
equation can readily be obtained by simply setting t=0 in Eq. (4) and the well-known homogeneous solution is

wðx,tÞ ¼ ½a1ek1xþa2ek2xþd1e�k1xþd2e�k2x�eiot ,

jðx,tÞ ¼ ½gs1a1ek1xþgs2a2ek2x�gs1d1e�k1x�gs2d2e�k2x�eiot (14)
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in which

k1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

o2

kc2
s

þ
o2

c2
0

 !
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

kc2
s

�
o2

c2
0

 !2

þ
4o2

c2
0r2

s

vuut
2

vuuuuut
, if oo

ffiffiffiffi
k
p

cs=rsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

kc2
s

þ
o2

c2
0

 !
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

kc2
s

�
o2

c2
0

 !2

þ
4o2

c2
0r2

s

vuut
2

vuuuuut
Ui, if o4

ffiffiffiffi
k
p

cs=rs,

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

kc2
s
þ o2

c2
0

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

kc2
s
�o2

c2
0

� �2
þ 4o2

c2
0

r2
s

r
2

vuuut
Ui, gsi ¼ kiþ

o2

kc2
s ki

, ði¼ 1,2Þ, (15)

and cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
S66=r

p
, c0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
S11=r

p
and rs ¼

ffiffiffiffiffiffiffi
I=A

p
¼ h=

ffiffiffiffiffiffi
12
p

.
It is well known that a surface crack on a structural member introduces a local flexibility that is a function of the crack

depth, material elastic constants and the loading modes. With account taken of the fact that the slender composite beam is
subjected only to the bending moment in this paper, fracture mode 9 is considered to be accurate enough to analyze the
transverse open crack [8,10] and thus the non-dimensional flexibility is given as [8,10]:

Y¼ 6D1S11p
h

l

Z c

0
½cYIðzÞF2

IMðc Þ�dc, (16)

where c¼ c=h, c is the crack depth and

D1 ¼�0:5b22Im
s1þs2

s1s2

� �
, YIðzÞ ¼ 1þ0:1ðz�1Þ�0:016ðz�1Þ2þ0:002ðz�1Þ3,

z¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E11E22

p
2G12

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n12n21
p

, FIMðcÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tang=g

p
cosg

0:923þ0:199ð1�singÞ4
h i

, g¼ pc

2
(17)

in which s1 and s2 are the characteristic roots of the following equation:

b11s4�2b16s3þð2b12þb66Þs
2�2b26sþb22 ¼ 0: (18)

All elastic constants E11, E22, G12, n12, n21 and bij in Eqs. (17) and (18) will be determined in Appendix A.

3. EMI model based on MRRM

For a composite beam with multiple cracks and bonded PZT patches, the whole composite beam should be divided into
several successively connected beam segments with small and finite length and each beam element can thus be regarded
as homogeneous. In MRRM, a major step is to set up two local coordinate systems for each beam segment, as shown in
Fig. 3. It is assumed that the PZT patches are bonded onto JK segment and the fixed end and the free end of the composite
beam are denoted as nodes 0 and N, respectively. If multiple cracks are located at joints 1, I, L, M, etc., the whole beam can
then be separated into 0–1, 1–2, y, I–J, J–K, y, L–M, M–N with N beam segments and N+1 nodes. It should be noted that,
for a uniform beam with homogenous material and geometric properties, we can treat the whole beam as one segment
using the MRRM formulation. This is greatly different from FEM which requires a number of beam elements resulting in
computationally expensive high-frequency analysis.
y01

0

 lLM

yML

yLM

K

yKJy10

1 M

L

x01

x10

xJK

xKJ
xML

xLM

J

yJK

Fig. 3. The local coordinates for application of MRRM.
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Having expressed beam deflection and rotation in Eqs. (13) and (14), the bending moment and shear force can be
obtained according to Eq. (4). At the crack location such as joint L, we have

wLKþwLM ¼ 0, MLKþMLM ¼ 0, QLK ¼QLM , jLM�jLK ¼Yl
@j
@x

� �LM

: (19)

Here the non-dimensional flexibility Y is determined by Eq. (16). The conditions given by Eq. (19) express the continuity of
bending moments, shear forces and transverse displacements and the jump of the rotations at the crack location.
Substituting the analytical expressions of bending moments, shear forces, transverse displacements and rotations into
Eq. (19), the following relations in a matrix form are further obtained:

dL
¼ SLaL, (20)

where dL
¼ ½dLK

1 , dLK
2 , dLM

1 , dLM
2 �

T is called the departing wave vector at joint L, and aL ¼ ½aLK
1 , aLK

2 , aLM
1 , aLM

2 �
T is the arriving

wave vector. The matrix SL is called the local scattering matrix with rank four at joint L [29,30]. Eq. (20) establishes a
scattering relation between various waves (traveling and standing waves) at node L.

At the left end of PZT patch at joint J, the following relations should be satisfied [24,31]:

wJIþwJK ¼ 0, jJI ¼jJK , MJIþMJK ¼ 0, QJI ¼QJK , at xJI ¼ xJK ¼ 0

and ep ¼
@up

@x
¼

d31V3

hp
¼K, xJK ¼ 0: (21)

where d31 and V3 are the piezoelectric constant of PZT patch and the applied electric field, respectively. Then, we obtain

AJaJ ¼ BJdJ
þQ 0, (22)

The above equation can further be rewritten as follows:

dJ
¼ SJaJ�ðBJ

Þ
�1Q 0, SJ

¼ ðBJ
Þ
�1AJ , Q 0 ¼ 0 0 0 0 K

	 
T
(23)

where dJ
¼ ½ d

JI
1 dJI

2 dJK
1 dJK

2 dJK
3 �

T and aJ ¼ ½ a
JI
1 aJI

2 aJK
1 aJK

2 aJK
3 �

T are the extended departing wave vector and arriving

wave vector, respectively. The matrix SJ is the local scattering matrix of order 5�5 at joint J [29,30].
At the two ends (0 and N) of the composite beam, the boundary conditions instead of continuity conditions must be

imposed. The scattering matrices at the two ends, S0 and SN , thus have a different form and the order is reduced to 2�2.
For illustration, we consider the free end at x= l (end N). To satisfy Q=M=0, the following relation can be obtained from
Eqs. (4) and (14):

dNM
1

dNM
2

( )
¼

gs1k1ðk2�gs2Þþgs2k2ðk1�gs1Þ

gs2k2ðk1�gs1Þ�gs1k1ðk2�gs2Þ

2gs2k2ðk2�gs2Þ

gs2k2ðk1�gs1Þ�gs1k1ðk2�gs2Þ

2gs1k1ðk1�gs1Þ

gs1k1ðk2�gs2Þ�gs2k2ðk1�gs1Þ

gs1k1ðk2�gs2Þþgs2k2ðk1�gs1Þ

gs1k1ðk2�gs2Þ�gs2k2ðk1�gs1Þ

2
6664

3
7775

aNM
1

aNM
2

( )
(24)

The above equation can be rewritten as dN
¼ SNaN . Treatment of other boundary conditions is also similar. Combining

all the local scattering matrices of N�1 joints and two ends, we arrive at a global scattering relation as follows:

d¼ SaþQ (25)

where d¼ ½ðd0
Þ
T, ðd1

Þ
T,. . ., ðdN�1

Þ
T, ðdN

Þ
T
�T is the global vector associated with departing waves, and

a¼ ½ða0Þ
T, ða1Þ

T, . . ., ðaN�1Þ
T, ðaNÞ

T
�T is the global vector associated with arriving waves [29,30]. The global scattering

matrix S and the force vector Q are respectively obtained as

S¼ diag S0
2�2 S1

4�4 � � � SJ
5�5 SK

5�5 � � � SM
4�4 SN

2�2 S
h i

,

Q ¼ ð02�1Þ
T
ð04�1Þ

T
� � � ½�ðBJ

Þ
�1Q 0�

T ½�ðBK
Þ
�1Q 0�

T � � � ð04�1Þ
T
ð02�1Þ

T
h iT

, (26)

where diag U½ � signifies a diagonal matrix. There are totally 4N+2 equations in Eq. (25) which are insufficient to determine
the 8N+4 unknowns of vectors d and a. Hence, additional relations between these two vectors will be explored as follows.

For each member, two different local coordinate systems have been employed. With a unique physical reality, solutions
of the two systems should predict identical result. More specifically, at identical point xLM ¼ lLM�xML on beam segment
without bonded PZT patches, we should have

wLM
ðxLMÞ ¼�wML

ðlLM�xMLÞ, (27)

which yields

aLM
1 ekLM

1
lLM

¼�dML
1 , aLM

2 ekLM
2

lLM

¼�dML
2 ,

dLM
1 e�kLM

1
lLM

¼�aML
1 , dLM

2 e�kLM
2

lLM

¼�aML
2 : (28)

For beam segment with bonded PZT patches, xJK ¼ lJK�xKJ , we also have

wJK
ðxJK Þ ¼�wKJ

ðlJK�xJK Þ, (29)
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which gives

aJK
1 ¼�dKJ

1 e�b1 lJK , aJK
2 ¼�dKJ

2 e�b2 lJK , aJK
3 ¼�dKJ

3 e�b3 lJK ,

dJK
1 ¼�aKJ

1 eb1 lJK , dJK
2 ¼�aKJ

2 eb2 lJK , dJK
3 ¼�aKJ

3 eb3 lJK : (30)

Eqs. (28) and (30) give the relations connecting the arriving waves in one local coordinates to the departing waves in

another local coordinates, and are called phase relations [29,30]. New local vectors are introduced here: d
L

at joint L (not

the end of PZT patch), and d
J

and d
K

, respectively, at joint J and K (left end and right end of PZT patch) can be expressed as
follows:

d
L
¼ ½dKL

1 , dKL
2 , dML

1 , dML
2 �

T , d
J
¼ dIJ

1 dIJ
2 dKJ

1 dKJ
2 dKJ

3

h iT

d
K
¼ dJK

1 dJK
2 dJK

3 dLK
1 dLK

2

h iT
: (31)

Hence, a new global vector d for the departing waves is constructed as

d¼ ½ðd
0
Þ
T

, ðd
1
Þ
T

, ðd
2
Þ
T

,. . ., ðd
N�

1ÞT , ðd
N
Þ
T

�T , (32)

where d
0
¼ ½d10

1 , d10
2 �

T and d
N
¼ ½dN�1,N

1 , dN�1,N
2 �T . The global vectors d and d contain the same elements but are sequenced

in different orders. The two vectors thus can be related through a permutation matrix U as

d¼Ud, (33)

Notice that Eqs. (28) and (30) are valid for both the beam segments without and with PZT patches. These relations can
be combined in a matrix as follows:

a¼ Pd, (34)

where the total phase shift matrix P of order (4N+2)� (4N+2) is defined by

P¼ diag P01 P12
� � � PJK

� � � PLM PMN
h i

, (35)

where PLM
¼ diag½ �e�kLM

1
lLM
�e�kLM

2
lLM
�e�kLM

1
lLM
�e�kLM

2
lLM
� for a beam segment without bonded PZT patches and meanwhile for

a beam element with bonded PZT patches, we have PJK
¼ diag½ �e�b1 lJK�e�b2 lJK�e�b3 lJK�e�b1 lJK�e�b2 lJK�e�b3 lJK �. Note that the

phase matrices Pij do not contain exponential functions with large positive indices and hence the numerical instability
usually encountered in the conventional transfer matrix method (TMM) [28] can be avoided. This is a crucial point for the
proper application of MRRM in high-frequency dynamic analysis of structures [23,31]. From Eqs. (25), (33) and (34), we
have

d¼RdþQ , R¼ SPU, (36)

where R is called the reverberation-ray matrix [29,30]. The following relations then hold:

d¼ ðI�RÞ�1Q , a¼ PUd: (37)

Hence, all undetermined constants in Eqs. (13) and (14) can be solved from Eq. (37).
In this paper, the PZT patch is considered as a thin bar undergoing only axial motion. The corresponding constitutive

equations are [13,20,23,31]

ep ¼
T1

Ep

þd31E3, D3 ¼ eT
33E3þd31T1, (38)

where T1 is the longitudinal stress, eT
33 ¼ eT

33ð1�diÞ is the complex dielectric constant, Ep ¼ Epð1þZiÞ is the complex Young’s
modulus, D3 is the electric displacement, and Z and d are the mechanical and dielectric loss factors, respectively. From
Eq. (38), we obtain

D3 ¼ ðeT
33�d2

31EpÞE3þd31Epep: (39)

The electric current passing through PZT patch can be determined from the electric displacement as

I¼ io
ZZ

D3 dxdy¼ iowplpðeT
33�d2

31EpÞE3þ iowpd31Epðu
R
p�uL

pÞ, (40)

where wp is the width of the PZT patch, uR
p and uL

p represent the axial displacements at the right and left sides of the PZT
patch in the corresponding local coordinate, respectively. Since E3=V3/hp, the coupled electric admittance of the PZT patch
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between two electrodes can be described by

Y ¼
I

V
¼

iowplpðeT
33�d2

31EpÞ

hp
þ

iowpd31EpðuR
p�uL

pÞ

V3
: (41)

From Eqs. (13), (21) and (37), we know that up is proportional to V3. Without loss of generality, a unit voltage is
assumed. Hence, Eq. (41) can be rewritten as

Y ¼
iowplpðeT

33�d2
31EpÞ

hp
þ iowpd31Epðu

R
p�uL

pÞ: (42)

The electric impedance Z can be expressed as the inverse of electric admittance. From Eq. (42), we can see that the first
term on the right side is only related to the PZT patches, while the second term involves parameters of PZT patches, host beam
and bond layer. In fact, the second term indicates the resonance condition of coupled PZT patch-bond layer-composite beam
system in the frequency domain. We assume a pair of PZT patches is bonded to the JK beam segment as before. Substituting
the expression for up in Eq. (13) into Eq. (42) and then using the phase relations again yields the electric admittance as

Y ¼
iowplpðeT

33�d2
31EpÞ

hp
þ iowpd31Ep

X3

j ¼ 1

ljða
KJ
j �aJK

j þdJK
j �dKJ

j Þ

0
@

1
A: (43)

Thus, from Eqs. (37) and (43), we can calculate the electric admittance (or electric impedance) of the PZT patch easily.
4. Numerical computations

4.1. Validation of the present model

To validate the present EMI model, numerical results are compared with available theoretical predications via the other
methods. First, a cantilever beam with length 0.8 m and square cross-section 0.02�0.02 m2 is assumed. A single crack of
depth 2 mm is located at 0.12 m from the fixed end. The material properties of the beam corresponds to an isotropic
material of Young’s modulus E¼ 2:10� 1011 N=m2, Poisson’s ratio n=0.35 and mass density r=7800 kg/m3 [10]. The PZT
patches are bonded symmetrically onto the cracked beam and are located at 0.3 m from the fixed end. All geometric
parameters and material constants of the PZT patch are listed in Table 1. The lowest three natural frequencies are directly
extracted from the EMI signatures using the present model (see Fig. 4) and they are listed in Table 2. Good agreement with
published results [10,34] can be observed. Another single simply supported beam of square cross-section with width
12.7 mm, height 12.7 mm and length 400 mm is also considered for the comparison study. A single-sided open crack with
depth 5 mm is located at 120 mm from the left end while the material properties of the host beam are [35]: Young’s
modulus 2:07� 1011 N=m2, density 7860 kg/m3 and Poisson’s ratio 0.3. From Fig. 5, the three natural frequencies extracted
from the EM signatures are about 700, 1630 and 2830 Hz. These values differ slightly from the experiment results (700,
1616 and 2864 Hz) by an impact test [35] with the maximum error being less than 1.2%. Unless otherwise stated, perfect
interfacial bonding is always assumed in this paper by taking cb=0 and a large value of shear lag parameter G=43.7.

Then, a cantilever beam made of unidirectional graphite fibre-reinforced polyamide is always considered in the
following investigation. The material properties of the composite, in terms of fibre and matrix, identified by the subscript f

and m, respectively, are listed in Table 3 [8–11]. The geometrical characteristics, the length, height and width of the beam
are further chosen as 1, 0.025 and 0.05 m, respectively [8,10]. The case considered in Ref. [10] will be adopted here for
comparison study and it is associated with three cracks of an identical depth 5 mm located at different positions. The
volume fraction of fibres V and the angle of the fibre y are assumed to be 0.5 and 01, respectively, and a pair of PZT patches
symmetrically bonded onto the beam is located at 0.15 m from the fixed end. The first three natural frequencies can then
be directly extracted from the conductance curves plotted in Fig. 6. The results of comparison are summarized in Table 4.
We can see that the difference between the numerical results obtained by the present method and the calculated ones in
Ref. [10] are less than 5% except for the first natural frequency for case A. Through further observations, we can find almost
all corresponding natural frequencies obtained by the present method are higher than those calculated in Ref. [10]. This
indicates that the resonant frequencies increase for a coupled PZT patch-bonding layer-host beam system considered here
due to the well-known piezoelectric stiffening effect. It is similar to what is observed in Ref. [36] for an isotropic beam. In
Fig. 6 and Table 4, three cases relating to the different crack locations are considered and are labeled as A(0.1; 0.2; 0.3),
B(0.4; 0.5; 0.6) and C(0.7; 0.8; 0.9), respectively. The data in the brackets mean the distances between the crack position
Table 1
Material constants and geometric parameters of PZT patch.

Geometry (mm3) Ep (N/m2) Z rp (kg/m3) d31 (m/V) eT
33 (F/m) d

10�10�0.2 6.67�1010 0.03 7800 �2.10�10�10 2.14�10�8 0.0185



Table 2
Comparison study for a beam with one crack.

Natural frequency (Hz) Ref. [10] Ref. [34] Present model

Mode 1 26.1015 26.1231 26.19

Mode 2 163.5959 164.0921 163.60

Mode 3 456.3634 459.6028 455.84

Fig. 5. Calculated results for a single beam with a crack for comparison with the experiment in Ref. [35].

Fig. 4. Comparison study for a beam with one crack.
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Table 3
Material constants of the composite beam [8–11].

Em (GPa) Ef (GPa) Gm (GPa) Gf (GPa) nm nf rm (kg/m3) rf (kg/m3)

2.756 275.6 1.036 114.8 0.33 0.2 1600 1900

Fig. 6. Comparison study for a composite beam with three cracks. (a) First mode, (b) second mode and (c) third mode.

Table 4
Comparison study for a composite beam with three cracks.

Crack locations Natural frequency (Hz) Ref. [10] Present model Percentage difference (%)

A Mode 1 22.362 24.42 8.43

Mode 2 189.486 194.6 2.63

Mode 3 495.819 504.6 1.74

B Mode 1 30.637 31.68 3.29

Mode 2 157.036 164.9 4.77

Mode 3 484.878 500.1 3.04

C Mode 1 35.629 35.57 �0.17

Mode 2 186.156 192.4 3.25

Mode 3 451.721 466.2 3.11

W. Yan et al. / Journal of Sound and Vibration 330 (2011) 287–307296



W. Yan et al. / Journal of Sound and Vibration 330 (2011) 287–307 297
and the fixed end. For example, (0.1; 0.2; 0.3) and (0.5) denote three cracks located at 0.1, 0.2 and 0.3 m and a single crack
located at 0.5 m from the clamped end of the beam, respectively.

4.2. Effect of the bond layer

Eqs. (2) and (8) have shown us the viscoelastic properties of the bond layer. For the sake of convenience in the following
discussion, the shear stiffness of bond layer is always assumed to be 1 GPa [25]. Unless otherwise stated, the volume
Fig. 7. Shear stress along PZT patch for various bonding layer thicknesses. (a) cb=0, f=10 kHz and (b) cb=0, f=450 kHz.
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fraction of fibres V and the angle of the fibre y are always assumed to be 0.5 and 451, respectively. A pair of PZT patches
symmetrically bonded onto the beam is located at 0.15 m from the fixed end.

Fig. 7 shows the shear stress distribution along the PZT patch for the cases where f=10 and 450 kHz and for various
bond layer thicknesses 10, 25, 40, 75 mm. The effect of viscosity is ignored here. For a thinner bond layer, the shear stress
becomes more confined to the PZT wafer ends. This agrees well with that observed by Giurgiutiu [19] under the quasi-
static condition. For a relatively higher frequency electric excitation with f=450 kHz, however, the distribution of shear
stress becomes more complicated as shown in Fig. 7(b). The distribution curves of shear stress between PZT patches and
host beam under various excitation frequencies are also given in Fig. 8. It is shown that forcing frequency has a significant
influence on the shear stress distribution and a sinusoidal distribution curve appears for a higher frequency electric
excitation instead of the relatively simple curves for the lower modes. The similar phenomenon has been reported in
Ref. [37]. It actually confirms the significance of the inertia effect of piezoelectric actuators.

As another parameter influencing the mechanical properties of the bond layer, the coefficient of viscosity cb is taken
from 10 to 10 000 Pa s in the simulation to investigate its effect on the stress transfer between the PZT patches and the host
beam. In this case, cb=10 Pa s represents very weak viscosity and cb=10 000 Pa s represents very strong viscosity [25]. From
Fig. 9, we can see that the shear stress distribution along the actuator/sensors changes slightly under a relatively lower
frequency electric excitation with f=10 kHz, and however it becomes more complicated at a higher frequency with
f=200 kHz, especially for the stronger viscosity with cb41000 Pa s.

4.3. Effect of various physical parameters on EMI signatures

The effects of some physical parameters such as the volume fraction and the ply-angle of the fibres on the first several
natural frequencies have been well investigated in the past decades [8–11]. However, the focus of this work is on the study
of the effect of the various physical parameters on EMI signatures in the higher frequency range. To understand the effect
of adhesive properties on the electro-mechanical impedance signatures, different values of viscosity and thicknesses of the
bond layer are now assumed. When the viscosity of the adhesive becomes stronger (i.e. the coefficient of viscosity cb

increases), the curve of conductance subsides down clearly, especially for the stronger viscosity with cb41000 Pa s.
However, it is interesting to note that no peak shift of conductance curve occurs as shown in Fig. 10. This is mostly due to
the fact that the viscosity of the adhesive does not change significantly the global stiffness of structure although a coupled
model is considered here. Although the curve of conductance changes more slightly, the similar trend can also be observed
from Fig. 11 for the parameter study with different thicknesses of the bond layer. This agrees well with that observed by
Bhalla and Soh [20] and Yan et al. [31].

Because the increasing of the ply-angle is accompanied by a great decrease of natural frequencies, we can see from
Fig. 12 that the resonant peaks of the conductance curve shift towards the left significantly with increasing ply-angle due
Fig. 8. Shear stress along PZT patch under different frequencies excitation (cb=10 Pa s, hb=75 mm).



Fig. 9. Shear stress along PZT patch for various viscosity values of the bonding layer. (a) hb=10 mm, f=10 kHz and (b) hb=10 mm, f=200 kHz.

W. Yan et al. / Journal of Sound and Vibration 330 (2011) 287–307 299
to reduction of the global stiffness of the host beam. However, a slight shift of the resonant peaks can be observed for larger
ply-angles from 801 to 861 as shown in Fig. 13. This indicates that the stiffness of the composite beam is insensitive to the
change of the ply-angle close to 901. The similar phenomena have been observed for non-cracked or cracked composite
beam at the first three natural frequencies [10,11].

The effect of volume fraction of the fibres V on EMI signatures is also investigated as plotted in Fig. 14. The conductance
curves change dramatically with the increasing volume fraction of fibres from 0 to 0.7 and it seems that no more
information about the composite can be found from Fig. 14. The further investigation shows that the resonant peaks of
the conductance curve shift towards the right clearly with the increasing volume fraction of fibres from 0.50 to 0.53



Fig. 10. EM admittance signatures for various viscosity values of the bonding layer (hb=10 mm).

Fig. 11. EM admittance signatures for various bonding layer thicknesses (cb=0).
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(see Fig. 15). This indicates that the increasing of the volume fraction of fibres is accompanied by a significant increase
in structural stiffness. It can also be observed from Eqs. (5), (6) and (A.3) (in Appendix A) that the transverse
bending stiffness S11 will increase significantly with the increasing volume fraction of fibres V for the case of EfbEm

adopted here.



Fig. 12. EM admittance signatures for various ply-angles (y=45–481).

Fig. 13. EM admittance signatures for various ply-angles (y=80–861).
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4.4. Crack detection based on EMI method

Based on the electric conductance spectra, the present model is now employed to quantitatively identify cracks due to
changes in structural stiffness. Three common crack growth cases are considered in this paper: (1) progressive crack depth
from 5 to 15 mm at the same location 0.3 m from the fixed end; (2) a single crack with depth 10 mm located at 0.1, 0.2 and



Fig. 14. EM admittance signatures for various volume fractions of fibres (V=0–0.7).
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0.3 m, respectively, from the fixed end; (3) crack propagation through the composite beam. Fig. 16 shows that the EMI
signatures are very sensitive to damages and the resonant peaks of the EMI signatures shift towards the left with
increasing crack depth due to the reduction of global stiffness of the composite beam. The great effect of crack locations on
the EMI signatures is also shown in Fig. 17. However, a slight shift of the resonant peaks of the EMI signatures can be
observed for the same crack growth cases when the ply-angle of the fibre becomes 901, as shown in Figs. 18 and 19,
respectively. The numerical results consequently reveal that, corresponding to the ply-angle y=901, the resonant



Fig. 15. EM admittance signatures for various volume fractions of fibres (V=0.5–0.53).

Fig. 16. EM admittance signatures for various crack depths (y=451).
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frequencies are insensitive to the variation of the crack depth and crack location. This agrees well with that observed by
Song et al. [10] at low frequencies. It should be pointed out that the ply-angle a defined in Ref. [10] is considered to be
positive when measured from the positive y-axis in the counterclockwise direction and thus we have y=901 in the case
of a=01.



Fig. 17. EM admittance signatures for various crack locations (y=451).

Fig. 18. EM admittance signatures for various crack depths (y=901).
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To model crack propagation in the following case, we assume that the crack with depth 5 mm is located at 0.3 m from
the beam root first, followed by simultaneous cracks located at 0.3 and 0.5 m, and finally simultaneous cracks located at
0.3, 0.5 and 0.6 m from the fixed end. We can see from Fig. 20 that the resonant peaks shift towards the left clearly with the
crack propagations due to reduction of global stiffness of the host beam.



Fig. 19. EM admittance signatures for various crack locations (y=901).

Fig. 20. EM admittance signatures for crack propagation (y=451).
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By investigating the above numerical examples, we can make a conclusion that the technology developed in this paper
is able to provide us an effective way to detect crack depth, location and propagation in a composite beam. However, it
should be noted that the EMI signatures may be insensitive to the cracks appearing in the composite beams under some
special conditions such as for the case of ply-angle y=901.
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5. Conclusions

In this paper, an analytical technology relating the EMI signatures in the high-frequency range to dynamics of an
anisotropic composite beam with multiple cracks is presented. A viscoelastic model is adopted to investigate the behavior
of bond layer between PZT patches and the host beam. Considering one-dimensional motion of the PZT wafers excited by
the applied high-frequency alternating electric field, a coupled structural system consisting of PZT patch, bond layer and
host beam is established and an analytical expression of electric admittance is then developed to quantitatively detect
cracks in the composite beam based on MRRM.

A comparison with the existent numerical results validates the accuracy and effectiveness of the present formulations.
The further parametric study indicates that some parameters such as the adhesive thickness, excitation frequency and the
coefficient of viscosity affect remarkably the shear stress distribution between PZT wafers and host beam, especially in the
high-frequency range. The effect of interfacial bonding behavior on EMI signatures is also investigated. With increasing
viscosity and thickness of the adhesive, the impedance signature changes accordingly which is, however, quite different
from the peak deviation of conductance spectra induced by cracks. This implies that even if the PZT patches are imperfectly
bonded onto the host structure in practice, the EMI signature thus obtained may be still be valid and valuable for damage
diagnosis through a proper analysis. Furthermore, the high-frequency EMI signatures are very sensitive to cracks appearing
in the composite beams and the present model can also correlate changes in signatures to physical parameters of the host
beam and hence provide further information on depth and propagation of the cracks. Thus, the proposed model provides
an efficient tool for analyzing high-frequency dynamic response of coupled structural system and also presents an effective
and convenient method to identify the depth, location and propagation of cracks in the composite structures.
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Appendix A

The compliance constants bij of the composite along the axes x0y can be determined as follows [8,9,11]:

b11 ¼ b11m4þð2b12þb66Þm
2n2þb22n4,

b22 ¼ b11n4þð2b12þb66Þm
2n2þb22m4,

b12 ¼ b12m4þðb11þb22�b66Þm
2n2þb12n4,

b16 ¼ ð�2b11þ2b12þb66Þm
3nþð2b22�2b12�b66Þmn3,

b26 ¼ ð�2b11þ2b12þb66Þn
3mþðb22�2b12�b66Þnm3,

b66 ¼ b66m4þ2ð2b11�4b12þ2b22�b66Þm
2n2þb66n4, (A.1)

in which bij are compliance constants of the composite along the principle axes x10y1. bij are related to the mechanical
constants of the materials by

b11 ¼
1

E11
1�n2

12

E22

E11

� �
, b22 ¼

1

E22
ð1�n2

23Þ, b12 ¼
�n12

E11
ð1þn23Þ,

b66 ¼ 1=G12, b44 ¼ 1=G23, b55 ¼ b66, (A.2)

where all elastic constants as well as the mass density r are calculated using the following formulations [8,9,11]:

E11 ¼ Ef VþEmð1�VÞ, E22 ¼ Em
Ef þEmþðEf�EmÞV

Ef þEm�ðEf�EmÞV

� �
,

n12 ¼ nf Vþnmð1�VÞ, n23 ¼ nf Vþnmð1�VÞ
1þnm�n12Em=E11

1�n2
mþn12nmEm=E11

� �
,

G12 ¼ Gm
Gf þGmþðGf�GmÞV

Gf þGm�ðGf�GmÞV

� �
, G23 ¼

E22

2ð1þn23Þ
, r¼ rf Vþrmð1�VÞ, (A.3)

where subscript m and f denote matrix and fibre, respectively. E, G and n are the modulus of elasticity, the modulus of shear
rigidity and Poisson’s ratio, respectively. V is the volume fraction of fibres.

References

[1] B. Whittingham, H.C.H. Li, I. Herszberg, W.K. Chiu, Disbond detection in adhesively bonded composite structures using vibration signatures,
Composites and Structures 75 (2006) 351–363.



W. Yan et al. / Journal of Sound and Vibration 330 (2011) 287–307 307
[2] J. Pohl, S. Herold, G. Mook, F. Michel, Damage detection in smart CFRP composites using impedance spectroscopy, Smart Materials and Structures 10
(2001) 834–842.

[3] Z. Su, L. Ye, Quantitative damage prediction for composite laminates based on wave propagation and artificial neural networks, Structural Health
Monitoring 4 (1) (2005) 57–66.

[4] P. Tan, L. Tong, Identification of delamination in a composite beam using integrated piezoelectric sensor/actuator layer, Composites and Structures 66
(2004) 391–398.

[5] Z. Wei, L.H. Yam, L. Cheng, Delamination assessment of multilayer composite plates using model-based neural networks, Journal of Vibration and
Control 11 (2005) 607–625.

[6] C. Bois, P. Herzog, C. Hochard, Monitoring a delamination in a laminated composite beam using in-situ measurements and parametric identification,
Journal of Sound and Vibration 299 (2007) 786–805.

[7] N.A. Chrysochoidis, D.A. Saravanos, Generalized layerwise mechanics for the static and modal response of delaminated composite beams with active
piezoelectric sensors, International Journal of Solids and Structures 44 (2007) 8751–8768.

[8] M. Krawczuk, W.M. Ostachowicz, Modelling and vibration analysis of a cantilever composite beam with a transverse open crack, Journal of Sound and
Vibration 183 (1) (1995) 69–89.

[9] M. Krawczuk, W.M. Ostachowicz, A. Zak, Modal analysis of cracked, unidirectional composite beam, Composites Part B 28B (1997) 641–650.
[10] O. Song, T.W. Ha, L. Librescu, Dynamics of anisotropic composite cantilevers weakened by multiple transverse open cracks, Engineering Fracture

Mechanics 70 (2003) 105–123.
[11] M. Kisa, Free vibration analysis of a cantilever composite beam with multiple cracks, Composites Science and Technology 64 (2004) 1391–1402.
[12] C.K. Soh, K.K.H. Tseng, S. Bhalla, A. Gupta, Performance of smart piezoceramic patches in health monitoring of a RC bridge, Smart Materials and

Structures 9 (2000) 533–542.
[13] V. Giurgiutiu., A.N. Zagrai, Embedded self-sensing piezoelectric active sensors for on-line structural identification, Journal of Vibration and Acoustics

124 (2002) 116–125.
[14] G. Park, A.C. Rutherford, H. Sohn, C.R. Farrar, An outlier analysis framework for impedance-based structural health monitoring, Journal of Sound and

Vibration 286 (2005) 229–250.
[15] V.G.M. Annamdas, C.K. Soh, Embedded piezoelectric ceramic transducers in sandwiched beams, Smart Materials and Structures 15 (2006) 538–549.
[16] Y.W. Yang, Y.H. Hu, Electromechanical impedance modeling of PZT transducer for health monitoring of cylindrical shell structures, Smart Materials

and Structures 17 (2008) 1–11.
[17] W. Yan, J.B. Cai, W.Q. Chen, Monitoring interfacial defects in a composite beam using impedance signatures, Journal of Sound and Vibration 326

(2009) 340–352.
[18] W. Yan, W.Q. Chen, Structural health monitoring using high-frequency electromechanical impedance signatures. Advances in Civil Engineering,

2010, 2010: 429148.
[19] V. Giurgiutiu, Tuned lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring, Journal of

Intelligent Material Systems and Structures 16 (2005) 291–305.
[20] S. Bhalla, C.K. Soh, Electromechanical impedance modeling for adhesively bonded piezo-transducers, Journal of Intelligent Material Systems and

Structures 15 (2004) 955–972.
[21] G. Park, C.R. Farrar, F.L. Scalea, S. Coccia, Performance assessment and validation of piezoelectric active-sensors in structural health monitoring,

Smart Materials and Structures 15 (6) (2006) 1673–1683.
[22] X.P. Qing, H.L. Chan, S.J. Beard, T.K. Ooi, S.A. Marotta, Effect of adhesive on the performance of piezoelectric elements used to monitor structural

health, International Journal of Adhesion and Adhesives 26 (8) (2006) 622–628.
[23] W. Yan, C.W. Lim, W.Q. Chen, J.B. Cai, Modeling of EMI response of damaged Mindlin-Herrmann rod, International Journal of Mechanical Sciences 49

(2007) 1355–1365.
[24] E.F. Crawley, J.D. Lius, Use of piezoelectric actuators as elements of intelligent structures, AIAA Journal 25 (10) (1987) 1373–1385.
[25] L. Han, X.D. Wang, Y. Sun, The effect of bonding layer properties on the dynamic behaviour of surface-bonded piezoelectric sensors, International

Journal of Solids and Structures 45 (2008) 5599–5612.
[26] H. Fan, G.F. Wang, Interaction between a screw dislocation and viscoelastic interfaces, International Journal of Solids and Structures 40 (2003)

763–776.
[27] X. Wang, E. Pan, Interaction between a screw dislocation and a viscoelastic piezoelectric bimaterial interface, International Journal of Solids and

Structures 45 (2008) 245–257.
[28] E.C. Pestel, F.A. Leckie, Matrix Methods in Elasto Mechanics, McGraw-Hill, New York, 1963.
[29] Y.H. Pao, W.Q. Chen, X.Y. Su, The reverberation-ray matrix and transfer matrix analyses of unidirectional wave motion, Wave Motion 44 (2007)

419–438.
[30] Y.H. Pao, W.Q. Chen, Elastodynamic theory of framed structures and reverberation-ray matrix analysis, Acta Mechanica 204 (2009) 61–79.
[31] W. Yan, C.W. Lim, W.Q. Chen, J.B. Cai, A coupled approach for damage detection of framed structures using piezoelectric signature, Journal of Sound

and Vibration 307 (2007) 802–817.
[32] Y.Q. Guo, W.Q. Chen, Dynamic analysis of space structures with multiple tuned mass dampers, Engineering Structures 29 (2007) 3390–3403.
[33] X.D. Wang, G.L. Huang, The coupled dynamic behavior of piezoelectric sensors bonded to elastic media, Journal of Intelligent Material System and

Structures 17 (2006) 883–894.
[34] E.I. Shifrin, R. Ruotolo, Natural frequencies of a beam with an arbitrary number of cracks, Journal of Sound and Vibration 222 (3) (1999) 409–423.
[35] H.P. Lin, Direct and inverse methods on free vibration analysis of simply supported beams with a crack, Engineering Structures 26 (2004) 427–436.
[36] W. Yan, W.Q. Chen, J.B. Cai, C.W. Lim, Quantitative structural damage detection using high frequency piezoelectric signatures via the reverberation

matrix method, International Journal for Numerical Methods in Engineering 71 (2007) 505–528.
[37] X.D. Wang, G.L. Huang, Wave propagation in electromechanical structures: induced by surface-bonded piezoelectric actuators, Journal of Intelligent

Material Systems and Structures 12 (2001) 105–115.


	An electro-mechanical impedance model of a cracked composite beam with adhesively bonded piezoelectric patches
	Introduction
	Formulations of composite beams with imperfectly bonded PZT patches
	EMI model based on MRRM
	Numerical computations
	Validation of the present model
	Effect of the bond layer
	Effect of various physical parameters on EMI signatures
	Crack detection based on EMI method

	Conclusions
	Acknowledgements
	Appendix A
	References




